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Abstract
We analyse the phase structure of a class of interacting boson models with two
types of bosons, one scalar and one non-scalar, subject to one- and two-body
interactions and with dynamic algebra U(n). To these models, we associate
a classical description in terms of f = n − 1 variables. We show that, if the
system is invariant under two- or three-dimensional rotations (for f � 2 even
or odd), the models have both first- and second-order phase transitions only if
f = 5, 9, 13, . . . . In the other f � 2 cases, the system has only second-order
transitions. All phase transitions of this class of models belong to the cusp
catastrophe in the classification of structurally unstable potentials.

PACS numbers: 05.70.Fh, 05.30.Jp, 03.65.Fd

1. Introduction

In recent years, algebraic models based on boson realizations of the Lie algebra U(n) have
been shown to provide an effective description of many-body problems with f = n−1 degrees
of freedom [1]. A particularly vast variety of applications of such models has been worked
out in nuclear and molecular physics, where algebraic methods have been very successful
in describing properties of collective rotational and vibrational spectra [2–6]. Applications
to hadronic physics have also been presented [7] and applications to other areas have begun
[8–10].

A common feature of these models is the occurrence of two ‘phases’ connected with
specific configurations of the system’s ground state: (i) a so-called ‘spherical’ phase
characterized by the dynamic symmetry U(f ) and (ii) a U(f )-symmetry breaking phase,
called ‘deformed’ phase, characterized by one or more remaining dynamic symmetries of the
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Table 1. The sb(l) models with quasi-spin l � 4 and some of their applications. Not all models
have had applications and models with isomorphic algebraic structure (for example, the Lipkin
model and the 1D vibron model) are placed together.

l n f Description and reference (if available)

0(t) 2 1 Lipkin model:
a schematic many-body system [12]
1D vibron model:
stretching vibrations of molecules [3–5]

1
2 (τ ) 3 2 2D vibron model:

bending vibrations in polyatomic molecules [6]
properties of cuprate superconductors [8, 9]

1(p) 4 3 3D vibron model:
rotations/vibrations of diatomic molecules [3–5]

3
2 (π) 5 4

2(d) 6 5 interacting boson model:
rotations/vibrations of atomic nuclei [2, 4, 5]

5
2 (δ) 7 6

3(f ) 8 7
7
2 (φ) 9 8

4(g) 10 9

model Hamiltonian. The crossover between the two phases gets sharper as the total number
of bosons, N, increases and becomes of phase-transitional type in the N → ∞ limit.

An important attribute of the asymptotic-N transition is its order in the sense of Ehrenfest
classification. The transition is said to be of the kth order if the kth derivative of the ground-
state energy with respect to the relevant control parameter changes discontinuously at the
phase-transitional point. While the first-order transition is associated with a sudden flip of
the ground-state wavefunction, higher-order transitions are accompanied by more delicate
structural changes. It turns out that the U(f )-symmetry breaking phase transitions in the
above bosonic models are of the first or second order, the form of the phase diagram being in
conformity with the classical Landau theory of phase transitions.

Phase transitions in interacting boson models have been extensively investigated ever
since Gilmore [11] developed an algorithm for their study. The aim of this paper is two-fold:
(a) to provide a general classification of the phase structure of this class of models, for an
arbitrary classical dimension f or, conversely, for any arbitrary quantum dimension, n, and
(b) to associate this phase structure with the ‘cusp’ catastrophe in the analysis of structurally
unstable potentials.

We consider here explicitly a class of algebraic boson models, with two types of bosons:
a scalar boson, denoted by s, and another boson, denoted by b(l), with f = 2l + 1 components.
The integer or half-integer number l = 0, 1

2 , 1, 3
2 , 2, . . . will be called the ‘quasi-spin’ of the

b-boson. Use of both integer and half-integer l allows one to treat within the same framework
problems both in even- and odd-dimensional spaces (f = even or odd). Problems on a line
will be described by l = 0, in a plane by l = 1

2 , etc.
Several models belonging to this class, together with some of their applications, are shown

in table 1. We emphasize the universal aspects of the applications in this table, ranging from
cuprate superconductors to molecules and nuclei. Further potential applications are to atomic
clusters [10] and atomic condensates.
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Figure 1. Dynamic-symmetry chains containing (for n � 3) the algebra of physical rotations,
O(3) or O(2), for the lowest values of l. Note that the decomposition of U(8) contains one of the
exceptional algebras, G2 [13].

2. Algebraic structure

Introducing boson creation and annihilation operators, s†, s for s-bosons and b
†
m, bm for b-

bosons (m = −l, . . . , +l), one can generate the Lie algebra of U(n) composed of the bilinear
products:

U(n) � s†s, s†bm, b†
ms, b†

mbm′ (m,m′ = −l, . . . , +l). (1)

The Hamiltonian and transition operators are written in terms of the elements of U(n). Also
from the construction given above it is obvious that n = f + 1.

In order to determine the possible ‘phases’ of the system, one must decompose the algebra
U(n) into all its subalgebra chains with or without conditions. For applications in nuclear and
molecular physics, it is convenient to impose three-dimensional (3D) rotational invariance for
problems with f = odd and two-dimensional (2D) rotational invariance for problems with
f = even. The case of f = 1 is special, since there is no rotational invariance to impose.

The decomposition of the algebra of U(n), with the constraint that the angular momentum
algebra O(3) be contained in the chain, has been carried out explicitly for n = even = 2, 4, 6.
The decomposition is summarized in figure 1. For n = 8, 10, . . . , it can be shown that at least
two chains containing O(3) always exist: (i) the chain U(n) ⊃ U(n − 1) ⊃ O(n − 1) and (ii)
the chain U(n) ⊃ O(n) ⊃ O(n− 1). These chains have in common O(n− 1), which has as a
consequence that transitional Hamiltonians between U(n− 1) and O(n) dynamic symmetries
are integrable. It has been conjectured that no other chain exists under these circumstances,
although no direct proof has been presented. The subalgebra chains of U(8) are also shown
in figure 1.

The decomposition of the algebra of U(n) for n = odd with the constraint the O(2) be
contained in the chain, has been carried out explicitly only for n = 3, and is shown in the
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Table 2. Subalgebras of the U(5) dynamic algebra associated with the sπ -boson model (l = 3
2 ).

Note that the dynamic-symmetry chain O(5) ⊃ O(4) ⊃ O(3) ⊃ O(2)′, where O(3) � J0, J+, J−
and O(2)′ � J0, is disregarded in the present interpretation of the model since it does not contain
the physical O(2) � Jz. Similarly, there exists another realization of O(5) and an associated chain
which does not conserve Jz.

Notation:

b
†
k
2

≡ π
†
k , b k

2
≡ πk (k = ±1,±3)

Operators:

Jz = 3π
†
+3π+3 + π

†
+1π+1 − π

†
−1π−1 − 3π

†
−3π−3

J0 = 1
2 (−π

†
+3π+3 + π

†
+1π+1 − π

†
−1π−1 + π

†
−3π−3)

J± = −π
†
±3π±1 + π

†
∓1π∓3

K± = π
†
±3π∓1 − π

†
±1π∓3

Pk = π
†
k s + s†π−k

Relevant subalgebras:

U(4) � π
†
kπk′ (k, k′ = ±1,±3)

O(5) � Jz, J0, J+, J−, K+, K−, P+3, P+1, P−1, P−3

O(4) � Jz, J0, J+, J−, K+, K−
O(2) � Jz

bottom part of figure 1. Since our interest is that of providing a general classification for
arbitrary n, we have undertaken the explicit construction of the subalgebra chains for n = 5.
This is also shown in figure 1. The study of the subalgebra chains required the explicit
construction of the algebra itself (not done previously). This construction is shown in table 2.
Although no applications exist of this boson model, it is of potential interest to problems in
four-dimensional (4D) Euclidean spacetime.

3. Geometric analysis

3.1. Coset spaces

Geometry can be associated to models with U(n) algebraic structure by the introduction of
the coset spaces U(n)/U(n − 1) ⊗ U(1) [14]. There are n − 1 complex coordinates in this
space which we denote by αm. The coordinates αm have the same transformation properties
under O(3) and O(2) as the operators bm. Properties of the ground state of the system can be
obtained by introducing coherent states. There are various forms of coherent states, all related
to each other. We use the projective coherent states that define a boson condensate [15–18]

|Nα〉 = 1√
N !

(
s† +

∑
m

αmb†
m

)N

|0〉. (2)

Note that 〈Nα|Nα〉 = N (α)N , where N (α) = 1 +
∑

m |αm|2.
The energy expectation value in states (2) reads as 〈Nα|H |Nα〉/〈Nα|Nα〉 ≡ E(α),

where H is the Hamiltonian of the system. Minimization of E(α) in parameters α yields a
variational ground state. The nature of phase transitions in interacting boson models can be
studied by taking the N → ∞ limit, in which the variational ground state becomes exact and
may exhibit nonanalytic changes with external parameters.



Phase structure of interacting boson models in arbitrary dimension 585

3.2. Even n (integer l)

For integer quasi-spin l, we require invariance of the system under 3D rotations. This is best
imposed by introducing spherical tensors with respect to O(3). If the boson creation operators
b
†
m transform as tensors of rank l, the corresponding annihilation operators do not. Spherical

tensors can be constructed by introducing the operators b̃m = (−)l−mb−m. Tensor products of
operators are introduced in the usual way. We use in this paper the notation

[T U ](L)
M =

∑
m,m′

(lml′m′|LM)TmUm′ (3)

for a tensor product of a tensor of rank l by a tensor of rank l′. The coefficient in
equation (3) is a Clebsch–Gordan coefficient of O(3). Written in this notation, the angular
momentum operators of the presently considered class of boson models read as

JM ∼ [b†b̃](1)
M (M = 0,±1). (4)

The most general rotationally invariant sb(l)-interacting boson model Hamiltonian with
one- and two-body interactions can be written as follows:

H = ε0 + ess
†s + eb[b†b̃](0) + e′

ss
†s†ss + u[[b†s†][b̃s]](0) + u′([b†b†](0)ss + H.c.)

+ v([[b†b†](l)[b̃s]](0) + H.c.) +
∑
L

wL[[b†b†](L)[b̃b̃](L)](0), (5)

where ε0, es, eb, e
′
s , u, u′, v, and wL (L = 0, 2, . . . , 2l) are arbitrary constants. We have

written Hamiltonian (5) in the normal-ordered form, in order to classify all possible terms.
Non-normal ordered interactions, such as

[[b†b̃](l)[b†s]](0) + H.c.,

can be obtained from the normal-ordered form by O(3) recoupling and need not be considered
separately.

Since in the class of models discussed here, the single-particle space is finite, having
dimension n, the contribution of one-body terms to the ground-state energy grows as N, while
that of two-body terms grows as N(N − 1). It is convenient, for the study of phase transitions
in these systems, to consider the energy per particle, and to scale two-body terms with an extra
factor of (N − 1) relative to the one-body terms [18]. Therefore, we will use the scaling

(es, eb) → 1

N
(es, eb),

(6)
(e′

s , u, u′, v, wL) → 1

N(N − 1)
(e′

s , u, u′, v, wL).

The average energy per particle corresponding to the Hamiltonian of equation (5) in
coherent states (2) is

E(α) = ε0 + es

1

N (α)
+ eb

[α∗α̃](0)

N (α)
+ e′

s

1

N (α)2
+ u

[α∗α̃](0)

N (α)2
+ u′ [α

∗α∗](0) + c.c.

N (α)2

+ v
[[α∗α∗](l)α̃](0) + c.c.

N (α)2
+

∑
L

wL

[[α∗α∗](L)[α̃α̃](L)](0)

N (α)2
, (7)

where α̃m = (−)l−mα−m. Note that E(α) does not depend on N, and that it represents, in the
limit N → ∞, the classical Hamiltonian of the system. This is so because of scaling (6),
which implies that quantum fluctuations of the energy per particle,

〈Nα|H 2|Nα〉
〈Nα|Nα〉 −

( 〈Nα|H |Nα〉
〈Nα|Nα〉

)2

,
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die out as O(N−1). In fact, the value of N−1 plays the role of Planck constant here. This
is an important distinction of the present class of models, with a finite-dimensional single-
particle Hilbert space, from infinite models, e.g., the lattice models, for which quantum
fluctuations disappear only at critical values of the interaction strengths indicating quantum
phase transitions [19]. In our case, ‘quantum’ phase transitions discussed below result solely
from the classical properties of the system.

The variables αm are abstract variables in the coset space. It is possible to introduce
canonical coordinates qm and momenta pm by [20]

qm = (−)mα−m + α∗
m√

2
, pm = i

(−)mα∗
−m − αm√

2
, (8)

which have the property q∗
m = (−)mq−m and p∗

m = (−)mp−m. The new variables are still
complex, but due to their m → −m symmetry one can separate (2l + 1) real coordinates (e.g.,
real and imaginary parts of qm with m � 0) and the same number of associated real momenta.

For the study of ‘spherical’ to ‘deformed’ phase transitions reported in this paper, it is
further convenient to introduce hyperspherical coordinates. Real variables Re qm and Im qm

(with m � 0) are expressed as

q0 = β cos θ1,√
2 Im q+1 = β sin θ1 cos θ2,√
2 Re q+1 = β sin θ1 sin θ2 cos θ3,

... (9)√
2 Im q+l = β sin θ1 sin θ2 . . . sin θ2l−1 cos θ2l ,√
2 Re q+l = β sin θ1 sin θ2 . . . sin θ2l−1 sin θ2l ,

where the radius β measures the overall degree of deformation (β = 0 for the ‘spherical’ phase
and β > 0 for the ‘deformed’ phase) while the angles θi (i = 1, 2, . . . , 2l) ≡ 	 determine the
deformed shape type and orientation.

It is worth noting that some of the angles in equation (9) can be eliminated by an
appropriate rotation of the coordinate system (the Hamiltonian being rotationally invariant).
This elimination is simple for l = 1, 2, but becomes complicated (if at all possible [21]) for
l = 3, 4, . . . . In the following general discussion, we will keep all 2l hyperspherical angles
defined in equation (9).

The analysis of the phase structure of interacting boson model proceeds then as follows:
we set in the classical Hamiltonian all momenta pm = 0 and consider the potential energy per
particle V (q) ≡ E(q, p = 0). This functional, when expressed in hyperspherical coordinates,
has the form

V (β,	) = Aβ2

1 + β2
+

A′β2

(1 + β2)2
+

B(	)β3

(1 + β2)2
+

C(	)β4

(1 + β2)2
, (10)

where A = eb/
√

2l + 1, A′ = [u + 2(−)lu′]/
√

2l + 1, while the coefficients B and C are
discussed below. We set ε0 = es = e′

s = 0 to avoid unimportant terms of zeroth power in β.
Concrete forms of functions B(	) and C(	) from equation (10) must be evaluated

specifically for each given quasi-spin l using the following formulae:

B(	) = 1√
2

v√
2l + 1

∑
M

(−)M Re
(
[qq](l)M q−M

)
β=1,

(11)
C(	) = 1

4

∑
L

wL√
2L + 1

∑
M

∣∣[qq](L)
M

∣∣2
β=1
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Table 3. Coefficients A, A′, B and C in the potential energy functional for the lowest values of l.

l Coefficients

0 A = eb

A′ = u + 2u′

B = v√
2

C = w0
4

1 A = eb√
3

A′ = u−2u′√
3

B = 0
C = 1

3 (
w0
4 + w2

2
√

5
)

2 A = eb√
5

A′ = u+2u′√
5

B = − v√
35

cos 3θ1

C = 1
5 (

w0
4 +

√
5w2
14 + 3w4

14 )

1
2 A = e±

2
A′ = u±

2
B = 0
C = w±±±±+w±∓±∓

4

3
2 A = e±1

2 (cos2 θ1 + sin2 θ1 cos2 θ2) + e±3
2 sin2 θ1 sin2 θ2

A′ = u±1
2 (cos2 θ1 + sin2 θ1 cos2 θ2) + u±3

2 sin2 θ1 sin2 θ2

B = 0
C = w±3±3±3±3+w±3∓3±3∓3

8 sin4 θ1 sin4 θ2

+ w±1±1±1±1+w±1∓1±1∓1
8 (cos2 θ1 + sin2 θ1 cos2 θ2)

2

+ w±3±1±3±1+w±3∓1±3∓1−w±3∓3±1∓1
2

× sin2 θ1 sin2 θ2(cos2 θ1 + sin2 θ1 cos2 θ2)

The list of these functions for the lowest values of l is given in table 3. For l = 0, there is no
angle dependence (trivially). For l = 1 the angle dependence can be eliminated completely
by rotation of the axes. For l = 2, there is dependence on one angle θ1 (the other three can
be eliminated, set to θ2 = θ3 = θ4 = π

2 , by rotation). The angle θ1 is identified with the
Bohr angle γ used in nuclear physics in the description of quadrupole oscillations of liquid
drops [22]. The constancy of C(	) results from the fact that for l = 2 there exist only two
independent scalar couplings of coordinates—those given by quadratic and cubic terms—so
that the quartic term in equation (7) is just proportional to the squared quadratic term [23].

For l = 3, 4, . . . , the explicit construction of the potential V (β,	) becomes increasingly
difficult. Nonetheless, some generic statements can be made. For l = odd, the cubic term
is zero. This is due to the fact that Bose symmetry implies that two boson creation or two
boson annihilation operators can be coupled only to even values of the angular momentum
L = 0, 2, 4, . . . . This even angular momentum, L, cannot in turn be coupled with odd l, to
give zero. Thus the term [[b†b†](l)[b̃s]](0) + H.c. in Hamiltonian (5) is identically zero. For
l = even, instead, a cubic term can be constructed. This property distinguishes even from odd
cases.

3.3. Odd n (half-integer l)

As explained in section 2, for half-integer quasi-spins l of the b-boson we relax the requirement
upon rotational invariance of the Hamiltonian. Instead of the full invariance under 3D rotations
we only assume O(2) invariance under 2D rotations, generated by
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Jz = 2
∑
m

mb†
mbm. (12)

The most general 2D rotational invariant one- and two-body Hamiltonian is

H = ε0 + ess
†s +

∑
m

emb†
mbm + e′

ss
†s†ss +

∑
m

umb†
ms†bms +

∑
m

u′
m

(
b†

mb
†
−mss + H.c.

)

+
∑

m1+m2=
m′

1+m′
2

wm1m2m
′
1m

′
2

(
b†

m1
b†

m2
bm′

1
bm′

2
+ H.c.

)
, (13)

where ε0, es, e
′
s , em, um, u′

m, and wm1m2m
′
1m

′
2

(with m,m1,m
′
1,m2,m

′
2 = −l, . . . , +l) are

interaction constants.
The coherent-state procedure outlined in section 3.2, in particular equation (2), is again

employed, yielding the following energy functional:

E(α) = ε0 + es

1

N (α)
+

∑
m

em

|αm|2
N (α)

+ e′
s

1

N (α)2
+

∑
m

um

|αm|2
N (α)2

+
∑
m

u′
m

α∗
mα∗

−m + c.c.

N (α)2
+

∑
m1+m2=
m′

1+m′
2

wm1m2m
′
1m

′
2

α∗
m1

α∗
m2

αm′
1
αm′

2
+ c.c.

N (α)2
. (14)

Variables αm and α∗
m must all together define (2l + 1) classical coordinates and the same

number of associated momenta. To ensure the continuity with the integer-l case, equation (8)
can again be used, yielding the relation q−m = (−)mq∗

m between coordinate components
with positive and negative values of m. The m > 0 components are then expressed in the
hyperspherical parametrization,

√
2 Im q+ 1

2
= β cos θ1,√

2 Re q+ 1
2

= β sin θ1 cos θ2,

... (15)√
2 Re q+l = β sin θ1 sin θ2 . . . sin θ2l

(cf equation (9)).
The potential energy (with ε0 = es = e′

s = 0) has the following form now:

V (β,	) = A(	)β2

1 + β2
+

A′(	)β2

(1 + β2)2
+

C(	)β4

(1 + β2)2
, (16)

where

A(	) = 1

2

∑
m

em|qm|2β=1, A′(	) = 1

2

∑
m

um|qm|2β=1,

(17)
C(	) = 1

2

∑
m1+m2=
m′

1+m′
2

wm1m2m
′
1m

′
2

Re[qm1qm2q
∗
m′

1
q∗

m′
2
]β=1.

Note that the terms with u′
m do not appear here since the corresponding interactions contribute

only to the kinetic energy.
Concrete values of coefficients from equation (16) for the lowest values of l are given

in the second part of table 3. Apparently, the angular dependence is more complicated than
in the integer-l case, which follows from the lower symmetry of Hamiltonian (13). In fact,
to simplify the formulae in table 3 we have additionally assumed that the system is invariant
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under z → −z reflection, so that em = e−m,wm1m2m
′
1m

′
2
= w−m1−m2−m′

1−m′
2

etc. One can notice
that, for l = 1

2 , functions do not depend on angles (the single angle θ1 can be eliminated by
2D rotations), while for l = 3

2 depend only on two angles (the third one being eliminated by
2D rotations). Also, in the case in which the single-particle energies and interaction strengths
do not depend on m, the angle dependence for l = 3

2 disappears.
A generic feature of all half-integer l cases is the absence of a cubic term in the potential

V (β,	). This result has its roots in the 2D rotational invariance of the Hamiltonian. For
half-integer values it is not possible to satisfy the condition m1 + m2 + m3 = 0. The absence
of cubic terms has dramatic consequences on the nature of the phase transitions, as discussed
in the following sections.

4. Order of phase transitions

Given the potential energy functionals (10) or (16), the analysis of phase transitions reduces to
the usual classical analysis (a) minimizing the potential functional and (b) looking for places in
the parameter space where the minimum evolves in a nonanalytic way. The equilibrium values
(β0,	0) can be taken as classical order parameters. As the number of dimensions increases
there are many phase transitions between different geometric configurations, mostly in angle
variables. In this paper, we are interested in phase transitions in the variable β, usually called
the ‘deformation’ variable.

Corresponding to these classical phase transitions, there are also ‘quantum’ phase
transitions. The order parameters here are the ground-state expectation values of some
operators. A commonly used order parameter for the phase transitions we are interested
in is the ground-state expectation value of the number operator for b-bosons, 〈nb〉0. The so-
called ‘spherical’ phase has 〈nb〉0 = 0, while the so-called ‘deformed’ phase has 〈nb〉0 > 0.
Classical and quantum order parameters are related via the expression

〈nb〉0 = Nβ2
0

1 + β2
0

. (18)

The ‘quantum’ phase transitions in the present sense are closely related to quantum phase
transitions studied in infinite lattice and many-body systems [19], although, as explained above,
interacting boson models with a finite single-particle space yield purely classical behaviour in
the asymptotic-N limit. In this paper, we do not discuss scaling behaviour and divergence of
correlations, which are landmarks of quantum phase transitions in infinite models, since for
the class of models presented here they have been discussed recently by Vidal et al [24] and
Rowe et al [25]. The term ‘phase transition’ is used here solely in the sense of a nonanalytic
change of the equilibrium (ground-state) configuration.

In order to study the phase structure of interacting boson models, we consider a family of
Hamiltonians (5) or (13) with the interaction strengths being some specific smooth functions
of a single external parameter, denoted here as t. Without the loss of generality we assume
that the dependence on t is such that the sum a = A + A′ of coefficients of quadratic terms in
equations (10) or (16) increases from a  0 to a � 0, which means that we proceed from
‘deformed’ to the ‘spherical’ phase.

The analysis is rather simple for l = 0, 1
2 , 1, when the potentials (10) and (16) do

not depend on angles. The case of l = 2 is special and has been extensively investigated
[2, 16–18]. One exploits the fact that C(	) does not depend on angles (see table 3). This
leads to the potential energy functional

V (β, γ ; t) = a(t)β2 + b(t)β3 cos 3γ + c(t)β4

(1 + β2)2
, (19)
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where β, γ are Bohr variables [22], while the coefficients a, b, c are related to those in
table 3 via simple expressions a(t) = A(t)+A′(t), b(t) = −v(t)/

√
35 and c(t) = A(t)+C(t).

Negative values of c are feasible only in a certain range of the parameter space which
does not overlap with the phase-transitional region, so from the present point of view c(t)

may be regarded as a positive scaling constant. Furthermore, the minimization of function
(19) in variable γ can be performed separately, yielding either γ0 = 0 or 60◦, and to find an
equilibrium value β0 � 0 of β we just need to minimize the simplified form

V ′(β; t) = a′(t)β2 + b′(t)β3 + β4

(1 + β2)2
, (20)

where a′(t) = a(t)/c(t), and b′(t) = −|b(t)|/c(t) � 0.
Equation (20) exhibits the well-known phase properties [17, 18], namely the first-order

phase separatrix

(b′)2 − 4a′ = 0, b′ < 0 (1st order) (21)

between ‘spherical’ and ‘deformed’ equilibrium shapes (here, the coexisting β0 = 0 and
β0 > 0 minima exchange their roles of local and global equilibria) with the b′ = 0 endpoint of
a second-order transition (where β0 = 0 local maximum absorbs β0 > 0 minimum and turns
into a new minimum). On the deformed side of the phase diagram, close to the second-order
transition, the deformation parameter β0 behaves as a square root of the distance from the
critical point measured by an increment of a′; hence the critical exponent is λ = 1/2.

For integer l � 3 and half-integer l � 3
2 , however, the general phase-transitional analysis

is hindered by a complex dependence of the respective potential energy functionals on 	.
In fact, the number of essential control parameters of the problem is generally larger than
two because the functions A(	),A′(	), B(	) and C(	) contain several arbitrary interaction
strengths. Moreover, the potential energy form may not allow separation of the minimization
procedures that determine the equilibrium values β0 and 	0.

In spite of these difficulties, it is still possible to formulate, for integer l � 3 and half-
integer l � 3

2 , a rescaled problem (20), where coefficients

a′(t) = A(t) + A′(t)
|A(t) + C(t,	0(t))| , b′(t) = B(t,	0(t))

|A(t) + C(t,	0(t))| (22)

are derived from dependences A(t), A′(t), B(t,	), C(t,	), and from angles θ0i (t)(i =
1, . . . , 2l) ≡ 	0(t) obtained by the overall minimization (involving both 	 and β variables)
of energy functional (10) or (16). The sign at β4 is considered positive for the reason explained
above. It is clear that the equilibrium value β0(t) � 0 must minimize V ′(β; t). If a′(t) and
b′(t) happen to be such that β0(t) > 0, the system is in the ‘deformed phase’. On the other
hand, if β0(t) = 0, the system is ‘spherical’ and the angles 	0 turn irrelevant.

A simple analysis of the form (20) reveals the known curve (21) of first-order phase
transitions ended at b′ = 0 by the second-order critical point. However, in the case
l = even � 4 the second-order phase separatrix extends to the entire half-line

a′ = 0, b′ � 0 (2nd order). (23)

This can be obtained by the β → −β inversion of the b′ � 0 situation keeping in mind
that only the β � 0 solutions are physical. Remind that the domain (23) is contracted to
a single critical point in the l = 2 case because the sign of b′ (resulting from the separate
minimization of the ∝ cos 3γ term in γ ) cannot be positive. However, in the most general
situation with β0 and 	0 entangled neither sign of b′ can be a priori excluded. As a result,
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Figure 2. Schematic phase diagram corresponding to equation (20). The full curve (C) indicates
the first- or second-order phase separatrix, while the dashed curves correspond to spinodal (S) and
antispinodal (A) lines demarcating the phase-coexistence region.

Table 4. Summary of ground-state ‘deformed-to-spherical’ phase transitions in the sb(l)-boson
models with l � 4. The case of l = 0 is exceptional and is discussed in section 5.

l Spherical-deformed phases Types of phase transitions

0 U(1) − O(2) 1st order, 2nd order λ = 1/2
2 U(5) − O(6), SU(3)

4 U(9) − O(10), . . . 1st order, 2nd order λ = 1/2
2nd order λ = 1 possible.

.

.
.
.
.

1 U(3) − O(4) 2nd order λ= 1/2
3 U(7) − O(8)

.

.

.
.
.
.

1
2 U(2) − O(3) 2nd order λ = 1/2
3
2 U(4) − O(5)

5
2 U(6) − O(7)

7
2 U(8) − O(9)

.

.

.
.
.
.

second-order spherical-deformed phase transitions may in principle appear also away from the
[U(n − 1)−O(n)] ⊃ O(n − 1) transitional path (characterized by b′ = 0). While at b′ = 0
the critical exponent in deformation parameter is λ = 1/2, in the b′ > 0 case we have λ = 1.
The most general phase diagram in the plane a′ × b′ is depicted in figure 2.

Figure 2 represents the generic situation. However, the analysis of the previous section
shows that for reasons of invariance under O(3) or O(2), cubic terms are missing in the
potential energy functional for integer l = odd and for half-integer l. Because the cubic term
is necessary for creating first-order transitions as well as the second-order transitions with
λ = 1, the present observation implies that bosons with odd- and half-integer values of l only
allow for second-order λ = 1/2 transitions between ‘deformed’ and ‘spherical’ shapes. A
summary of results for the lowest values of l is given in table 4.

The above discussion was restricted to phase transitions in the β variable. Phase transitions
in angle variables may take place [26] at some values of t. The classification of phase transitions
in angle variables is still an open problem.
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Figure 3. Mapping (27) of B = −1 and B = 0 trajectories with A ∈ (−∞, +∞) from the
parameter space of equation (26) to the cusp form (24). The cusp topology is shown in the inset.
The spinodal, critical and antispinodal points of the ‘deformed-to-spherical’ evolution correspond
to points S, C and A, respectively (C’ for B = 0). At the spinodal point, the position of the β0 < 0
minimum reaches zero and becomes physical.

5. Relation to the cusp catastrophe

It is known that a useful classification of the mean-field phase transitions can be obtained from
the analysis of structurally unstable potentials within the framework of the catastrophe theory
[27, 28]. One of the most common catastrophes is the one with germ x4 and codimension
equal to 2, called the cusp. Its potential reads as

V(x) = x4 + Ax2 + Bx, (24)

where x is a coordinate and A,B two control parameters. Within a cusp-like region

A < 0, |B| � 4

3
√

6
(−A)3/2 (25)

the potential develops a bistable form with two coexisting minima at x > 0 and x < 0 (see
figure 3(inset)). If B crosses zero the minima swap, giving rise to a first-order structural phase
transition.

The theory shows that all catastrophes with two control parameters and one dynamical
variable are topologically equivalent to the cusp [27, 28]. Indeed, phase diagrams of a vast
variety of systems are known to have similar forms resulting from the inherent connection
with the cusp catastrophe [29–31].

Also the behaviours discussed in section 4 belong to this class. In order to show this
explicitly, we need to transform the rescaled potential energy (20) to the canonical cusp form
(24). Since the denominator in equation (20) plays only the role of a form factor, it can be
removed, within a physically relevant interval β ∈ [0, βmax], by a smooth and monotonous
transformation β → β̄ = f (β) (Taylor expansion of f −1 can be obtained term by term using
the expanded form of equation (20)). Therefore, let us consider a transformed interacting
boson model potential

V (β̄) = β̄4 + Aβ̄2 + Bβ̄3, (26)

where A and B now stand for some redefined control parameters. It is easy to see that
a continuous mapping (A,B) �→ (A,B) from equation (26) to (24) can be achieved via
appropriate parameter-dependent shifts of x and V , yielding simple relations

A = A − 3
8B2, B = 1

2B
(

1
4B2 − A

)
. (27)
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In spite of the simplicity of the above analysis, there exists an obstacle to a direct
comparison of forms (24) and (26). It is the fact that for l > 0 the potential energy minima
with negative β0 are not relevant (β, as a radius, must be semipositive). That is why, as
follows from equation (27), a first-order phase transitional path with B = const < 0 and
A ∈ (−∞, +∞) in the IBM parameter plane maps onto a tilted line in figure 3. The line is
located within the cusp region (25) all the way until the coefficient A reaches the antispinodal
value, A = 9

32B2 (point A), but before the spinodal value, A = 0 (point S), one of the cusp
minima corresponds to a nonphysical value β0 < 0. It is only between points S and A where
the potential energy exhibits real phase coexistence form, the swap of both minima taking
place at C. Similarly, the second-order phase transitional path with B = 0 is mapped onto
a vertical line in figure 3 crossing the cusp point when A = 0, i.e., at the critical point.
The second-order phase transitional path with B = const > 0 (not shown in the figure) is
associated with a mirror conjugate of the B < 0 path with respect to the vertical axis, the
critical point corresponding to the intersection with the left cusp boundary.

It is worth making here a comment on the exceptional situation with l = 0. In this case, the
configuration space is one-dimensional and both signs of β are allowed. The potential energy
has two real minima even before the point S in figure 3, which therefore no more represents a
spinodal point. In other words, the U(2) model with B �= 0 exhibits coexisting phases for all
values of A before the antispinodal point. (Note, however, that in some applications, when the
b-boson is assumed to carry negative parity, the cubic term is forbidden by parity conservation
and the model has only a second-order phase transition.) The increase of dimension for l > 0
introduces new features, particularly the possibility that a minimum of V in β is only a saddle
point of the global dependence. This situation (well-known from the l = 2 case, e.g.) still
tends to cause some confusion.

6. Higher order interactions

In most applications of interacting boson models to physical systems, the Hamiltonian contains
only one- and two-body interactions and thus our classification is valid and appropriate. There
are few applications to nuclei and molecules in which interactions of order higher than two-
body have been considered, in particular three- and four-body interactions. A classification
of phase transitions in these cases is by far more complex. The evaluation of the energy
functional is not a problem, and can be (and has been) dealt with algebraic manipulations. For
example, in the case l = 2, the energy functional written in terms of the variables β and γ for
a Hamiltonian up to k-body terms, is

V (β, γ ) = 1

(1 + β2)k

∑
i,j

aijβ
2i+3j cosj 3γ, (28)

where the ranges of integers i and j are bounded by 2i + 3j � 2k. This energy functional has
many parameters, aij , and only by setting some of the parameters equal to zero, a study has
been attempted.

A similar situation occurs for the catastrophe classification, where it is known that for
codimension higher than 5 the elementary classification becomes infinite [28]. We are planning
further studies in this direction to see whether or not a classification of the phase structure of
boson models with three-body interactions is possible.
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7. Conclusions

In this paper, we have analysed the phase structure of a class of U(n) boson models, where
the constituents are scalar bosons, s, and non-scalar bosons, b(l), with 2l + 1 = f = n − 1
components, and with a one- and two-body Hamiltonian subject to 3D rotational invariance
for n = even � 4 and 2D rotational invariance for n = odd � 3. Several models of this class
are of current interest in nuclear and molecular physics, but potential applications range also
to other fields, such as hadronic physics, superconductivity etc.

The geometry of the space associated with these models is Rf . We have introduced in this
space hyperspherical coordinates, with a radius β and angles θi (i = 1, . . . , 2l) and considered
in this paper only phase transitions in the ‘deformation’ variable β. A classification of phase
transitions in the hyperangles remains to be done.

We have found that while for l = 0, 2, 4, 6, . . . (f = 1, 5, 9, 13, . . .) the system can have
both first- and second-order transitions, for all other values it has only second-order transitions
in β. The critical exponent of the order parameter β0 for the second-order transitions is always
λ = 1/2. For l � 4 (f � 9), there is the possibility of having second-order transitions with
critical exponent λ = 1.

Finally, we have shown that all phase-transitional structures discussed here are specific
realizations of the cusp catastrophe in the theory of structurally unstable potentials. This is a
direct consequence of the fact that one- plus two-body interactions cannot produce potential
energy terms of power higher than four, β4.

Since the N → ∞ ground-state phase transitions in systems with a finite single-particle
Hilbert space are completely determined by their classical limit, the present considerations
establish an equivalence class valid across a large number of specific applications.
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